- 什么是有效负载?如何控制您的库卡机器人?
- KUKA库卡机械手KR360维修保养技巧分享
- 维修保养|库卡KUKA机器人KR 210维修保养经验丰富
- 库卡KUKA机器人维修保养小手册
- 维修保养|KUKA库卡机器人维修保养干货知识
为什么巨头开始发力AI+政府领域的应用?
为什么巨头开始发力AI+政府领域的应用?
如果说在2017年阿里云栖大会中,马云高调发布的达摩院计划,充分展现了阿里未来全面制霸人工智能时代的野心的话,那么最近6个月阿里巴巴ET城市大脑的攻城略地,则代表了阿里当前在当前人工智能应用方面的实际落子。
阿里的ET城市大脑,在2016年阿里的云栖大会上城市大脑计划被首次提出,并与杭州签署了城市大脑框架合作协议;而到了2017年阿里的城市大脑急速扩张,分别落户到澳门、重庆及雄安新区之中,甚至目前已经和马来西亚吉隆坡签署了合作协议,通过阿里ET城市大脑技术解决吉隆坡的交通治理问题。
另外一个里程碑事件同样出自BAT,腾讯在2017年年底与广东省政府签署了战略合作协议,腾讯与三大运营商广东分公司合资成立数字广东公司,旨在打造全国领先的数字政府,实质上全面接管了广东政务信息化的主体工作,并基于此结合三大运营商电信资源探索IoT+云+AI的数字城市新模式。第三个事件属于目前国内AI头部企业商汤科技,库卡机器人驱动器维修,商汤与上海市政府签署了战略合作协议,上海将借助商汤的力量加强人工智能生态圈建设,从而推进智慧城市的创新应用。
当然,上述三个案例代表了ABCT(人工智能、大数据、云计算、物联网)技术应用于政府治理领域的不同路径选择。阿里ET城市大脑是自上而下模式:即以智能交通调度等人工智能城市应用为先,基于阿里云成熟的资源构建城市大脑,并逐步打通、接入甚至接管试点城市的各项政务数据;而腾讯模式是自下而上模式:即更为务实地率先解决城市数据孤岛问题,打通传统政务信息化过程中各委办局部门各自为政建设的IT系统,以统一电子政务平台连接数据,并往上催生AI+城市、AI+政府应用;商汤与上海市合作的案例,可总结为生态赋能模式,即利用本身AI独角兽背后的通用AI技术积累以及产业资源,与合作城市深度合作,借助其扶持资金、产业政策等要素建立AI本地产业生态,并以单点形式赋能到各AI+城市应用之中。
三种模式可总结为上面的这张图形,模式结论由独立产业观察所得,仅供读者参考。
从不是特别严谨的角度说,AI+政府是巨头们在AI+产业方面第一次大规模、持续性投入的重要尝试,这留给我们很多的遐想,为什么选择政府治理领域?而这里的前置问题是,为什么AI+产业如此重要,AI技术一定要深入下沉到产业之中?
为此,我们先讨论AI+产业的定位问题。
AI+产业的上山下乡
我在此前《如何看待目前国内AI公司的估值?》一文中多次提到,人工智能产业的未来,一定要深度结合产业场景,靠如智能鉴黄等单点的标准化AI技术服务,去销售API接口或者License注定无法走远。换句话说就是产业定位的进化,比如在AI+安防领域,你可以定位与单点,比如生产摄像头等硬件,或者做人脸识别算法提供商;你也可以定位于线,将自家算法内嵌到摄像头中,并提供后端整体解决方案做全栈服务;你也可以更进一步,深度参与到安防行业的运营中去,比如结合自家技术解决方案和数据运营,承诺一年内抓逃多少、提升破案率多少百分比,通过AI赋能真正解决了产业的某些以往不能解决的痛点,以AI赋能推动产业智能化步伐,深度参与到各产业智能化转型升级之中,并从中分享到增量的红利,工业机器人维修,而非游离在产业的边缘,靠标准化技术服务分得冷饭残羹。
对于国内人工智能领域,喧嚣的2017年在拼融资、拼上头条、拼顶级会议论文中逐渐过去了。2018年将会是极其重要的一年获得了大量融资的国内高估值AI公司们,需要明确找到并确立自身的产品化路径,并在特定的产业领域深度绑定自身的产品解决方案,实现技术与场景的深度结合,真正占据如金融、零售等AI技术应用领域中的真正营收头部,而非过往所谓的估值头部、技术头部,这点趋势非常重要。
我们实际上会发现,人工智能技术在特定场景的深耕,最终将逐渐由技术问题转变为运营问题,AI+产业的深度运营,其实质是对于各类单点技术服务提供商的降维攻击,而降维攻击是巨头们最为擅长的武器。
在《如何看待目前国内AI公司的估值?》一文中,我提出了观察AI公司进化的点、线、面、体理论。对于目前多如过江之鲫的国内AI初创公司而言,其中相当一部分仍然停留在点阶段,即提供单点技术服务阶段,少数能把行业场景数据、业务、技术串成一条线,提供整体解决方案,而真正的AI技术产品化,我认为是在AI赋能下的产业深度运营,运营能力决定了产品化的高度。以阿里ET城市大脑为例,其产品化程度取决于城市大脑解决了多少城市治理问题,比如治堵效率,这将决定城市大脑这个产品未来在其他城市的可落地性和快速复制性,而绝非取决于大数据平台、算法等单点技术要素。
对于BAT等巨头而言,凭借AI赋能深入产业有着极其充分的理由推动产业智能化步伐,深度参与到各产业智能化转型升级之中,并从中分享到增量的红利。如最近阿里、腾讯纷纷加速了对传统零售企业的战略投资和收购,其背后逻辑也正在于此凭借自身大数据及新技术的赋能,显着提升零售效率及孵化出如盒马鲜生等新物种。
如果从商汤、旷视、依图等国内纯AI初创独角兽角度看,他们同样需要深入到产业中。目前这批AI独角兽实质是非常重的模式,先是人才上优秀的科学家团队搭建本来就是投入极大的事情,核心业务上我们也可以清晰看到全栈趋势:从算法、技术解决方案到前端硬件、AI芯片都需要涉及,才能构成完备的AI服务核心能力。如果将互联网初创公司比作特种兵小队的话,那AI独角兽就相当于具备完整火力配备的炮兵连队,特种兵小队专注于战术本身,武器的话属于实用主义够用即可,而炮兵连的考虑重点是火力的极致输出,业务领域上如果只是仅仅提供一些如智能鉴黄、人脸识别等基础技术服务,或在消费级市场提供一些如Prisma等APP,则纯属大炮打蚊子,是无法消化其估值的。
讨论到这里,我相信已经充分说明了AI技术为什么一定要结合产业,AI+产业将对单点技术服务商产生巨大的替代作用(降维攻击),而回到本文的主题上,为什么会选择AI+政府这个产业领域?这里面有什么玄机?
AI+政府为何如此重要?
当然,从直观上说,巨头以及独角兽们重视AI+政府领域,首先有着打造样板、享受蜜月期各种政策红利的考虑。而背后深层的原因,我认为是与AI+政府背后的巨大潜力有关,应该如何深刻理解其背后的大趋势?本文认为,需要放在中国经济新周期之下,才能够看到其背后真正的势和道。
目前中国经济新周期、新常态已经成为了热门词汇,经济学者们对此已经有足够多的讨论和解读。其中所谓的中国经济新周期,对于地方政府而言,在于逐渐告别对土地财政的依赖,严防死守地方债务风险,实现社会治理模式的改变,即降低社会治理成本以及政府执政成本,最终实现地方财政的去杠杆以及可持续发展。尤其在最近中央密集表态绝不兜底地方债务问题,这意味着在今后数年,地方政府需要勒紧裤带过日子,在这个背景下,缩减不必要的财政支出,以及探索提升社会治理效率的方案变得非常必要了。