- 什么是有效负载?如何控制您的库卡机器人?
- KUKA库卡机械手KR360维修保养技巧分享
- 维修保养|库卡KUKA机器人KR 210维修保养经验丰富
- 库卡KUKA机器人维修保养小手册
- 维修保养|KUKA库卡机器人维修保养干货知识
5家创新型癌症AI公司、10大应用场景,除了影像之外,AI最有潜力的用途还有哪些?
5家创新型癌症AI公司、10大应用场景,除了影像之外,AI最有潜力的用途还有哪些?
医学博士StefanButtigieg认为,在日常生活中我们可能并不能感受到目前正在进行着的人工智能革命,但事实上这些前沿的技术正在以惊人的速度推动着医学的革新。
他预计,库卡机器人,人工智能(AI)系统将在美国90%的医院和全球60%的医院和保险公司中得到应用,从而为70%的患者提供更加方便获取、价格更低廉且质量更高的护理。
此外,AI市场中的医疗保健应用将在全球得到迅速采用,预计到2021年的年复合增长率达到42%。Frost&Sullivan甚至认为,到2021年这些AI的医疗保健应用的全球收益将达到67亿美元。
那具体到提高病症的治疗研究如世界医学公认的难题癌症的治疗,人工智能会产生哪些影响?StefanButtigieg对在AI技术推动下的癌症治疗和研究的未来进行了探索。
人工智能在癌症治疗研究的影响
肿瘤学是专门针对癌症诊断和治疗的医学分支学科,其包含医学肿瘤学、放射肿瘤学和外科肿瘤学三门不同的子学科,人工智能(AI)在这些子专业中都发挥着重要的作用。
人工智能是怎样在癌症这种复杂的疾病的治疗研究中发挥作用的呢?
德克萨斯大学MD安德森癌症中心和加利福尼亚州帕洛阿尔托医学基金会的医生们已经开始探索人工智能和大数据在抗癌方面的潜在用途。
他们提出了14种可以使得癌症治疗研究可以获益的应用场景。AI研究人员和临床医生将这些场景主要归纳为三条主要途径来加速肿瘤学研究:
1、通过进一步发展和整合现有的癌症记录手册,从地方到全球层面,进行分析和解释,以更好地了解癌症机制(从常见到罕见癌症)。大数据集提供了可靠的证据基础,而另一方面由人工智能来帮助分析;
2、通过对最佳实践方式及趋势进行分析,来提升全球癌症治疗途径;
3、通过大力促进成本效益实验的实施。
AI重塑了我们用于诊断癌症的工具
传统医学上我们使用临床手段如超声检查、X射线、计算机断层扫描(CT)和磁共振成像(MRI)检测癌症。然而,这些技术其实对许多癌症是无法完全识别出的。
另一种方法是分析微阵列基因谱,这种听上去很复杂的方法只需使用极少量的遗传物质来检测癌症,以评估某些基因表达的程度。这种遗传材料产生的数据可创造必须分析的巨大数据集。此分析可能需要好几个小时才能完成。但现在这个复杂耗时的分析可以通过AI来快速执行。
从2001就开始的研究中可以看出事实上,人工智能在这里起着重要的作用,而当我们快速推进到2017年时,我们看到神经网络的研究人员已经在通过创新技术(如GeneMasking)对癌症进行分类了。
当科学家难以理解甚至准确地预测肿瘤的行为方式时,肿瘤恶性作用就会暴露无遗。无数癌症患者及其家属都在与那些未知的复发可能性做斗争。当几个原癌细胞在初始治疗中侥幸存活下来或者因体积太小在治疗后难以被检测到,病人就有可能面临癌症复发的危险。
斯坦福人工智能实验室和斯坦福大学医学院之间的合作启发了TensorFlow和13万皮肤病图像数据库的诞生,并训练TensorFlow算法来视觉诊断潜在的皮肤癌。最重要的是,这套算法算出的结果与21名皮肤科医生团队也互相匹配。
抗癌战斗中的AI初创公司
肿瘤学领域的人工智能应用越来越多,目前有五家公司非常值得关注。近年,从图像中识别出对象物的图像识别技术借助深度学习,其应用范围得以迅速提高。
总部位于美国旧金山的新兴企业Enlitic将深度学习运用到了癌症等恶性肿瘤的检测中。该公司开发的系统的癌症检出率高于放射技师。深度学习是使用模拟人脑结构的深度神经网络的一种机器学习方法,也可用于语音识别及自然语音处理等,但取得显着成果的要数图像识别领域。
Enlitic正在使用深度学习来自动检测胸部CT图像中的肺癌结节,结果显示其比胸部放射科医师专家组具有更高的准确度。
InsilicoMedicine公司成立于2014年1月,KUKA机器人示教器维修,位于巴尔的摩。其通过AI技术来进行药物研发、生物标志物开发和衰老研究,该公司应用深度学习算法来进行癌症治疗的药物研发,如免疫疗法。今年8月InsilicoMedicine还与全球领先的区块链技术全方位服务公司Bitfury签订了合作协议,共同研发将区块链技术应用于医疗健康应用程序的创新解决方案。
OncoraMedical公司正在为放射肿瘤学提供预测意见和风险分析。通过这种方式,他们正在帮助辐射肿瘤学家做出更好的决策,并更好地利用他们生成的多样化和有价值的数据。这家位于费城的初创公司专注于帮助癌症研究和治疗,特别是在放射治疗方面。
世界各地的病理医生每天都在诊断癌症,他们的工作需要分析上千张片子。如果有一个简单的方法帮助这些专家过滤所有正常的片子,并对需要进一步研究的片字进行标注,那么医生们的工作量将会减轻很多。
Proscia是一家将计算机智能应用于肿瘤病理学的公司,它收集整理来自全世界的肿瘤病理数据和图像,并将其应用于临床一线肿瘤治疗。Proscia设计的这个数字病理平台,允许病理学家和研究人员利用每张片子中的病理数据。今年上半年,Proscia将这项云技术跨界应用于肿瘤病理分析,建立了让全世界的人们可以轻松共享的肿瘤病理切片云数据库。
AI在肿瘤学领域的未来
肿瘤学杂志在ESMOOpen刊登了Curioni-Fontecedro博士的文章应用人工智能的肿瘤学新时代,该文章简要解释了目前的情况。
虽然这项技术和研究存在并可用于癌症护理和研究,但它们尚未覆盖到整个肿瘤学界。那些还没有覆盖到的地方需要在肿瘤学达到下一个水平时,通过医生拿到资助及接受培训去购买,才能得到实施。
癌症研究治疗的未来是光明的,我们期待在不久的将来,癌症将被以一种简单无缝的方式来看待及解决,为癌症患者们提供恢复健康的希望和机会。StefanButtigieg还提到了十种对人类医疗保健具有重大影响的人工智能应用场景。
1、电子病历挖掘
电子病历是一个汇集了患者们所有健康数据的存储库。如果决策者需要根据在某个特定的年份来分配资源,这就需要公共卫生专业人员、数据科学家和信息学家共同协作,根据特定的临床编码标准来分析成千上万的匿名患者记录。
在目前纸质临床文件主导的大环境下,这是不可能实现的。此外该过程通常还需要好几个月的时间且有诸多结果是不符合科学意义的。
但电子病历挖掘技术不仅限于高层次决策背景下的应用,其实它也可用于直接改善患者的医疗体验。比如在招募患者进行临床试验时,电子病历挖掘技术可对患者进行匹配。换而言之,患者招募系统(PRS)可以直接发掘到符合条件特定患者,为他们提供参与临床试验的机会。
2、高级咨询机器人